首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Ultraviolet Raman examination of the environmental dependence of bombolitin I and bombolitin III secondary structure.
Authors:J S Holtz  J H Holtz  Z Chi  and S A Asher
Institution:Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA.
Abstract:Bombolitin I and III (BI and BIII) are small amphiphilic peptides isolated from bumblebee venom. Although they exist in predominately nonhelical conformations in dilute aqueous solutions, we demonstrate, using UV Raman spectroscopy, that they become predominately alpha-helical in solution at pH > 10, in high ionic strength solutions, and in the presence of trifluoroethanol (TFE) and dodecylphosphocholine (DPC) micelles. In this paper, we examine the effects of electrostatic and hydrophobic interactions that control folding of BI and BIII by systematically monitoring their secondary structures as a function of solution conditions. We determine the BI and BIII secondary structure contents by using the quantitative UV Raman methodology of Chi et al. (1998. Biochemistry. 37:2854-2864). Our findings suggest that the alpha-helix turn in BIII at neutral pH is stabilized by a salt bridge between residues Asp2 and Lys5. This initial alpha-helical turn results in different BI and BIII alpha-helical folding mechanisms observed in high pH and high salt concentrations: BIII folds from its single alpha-helix turn close to its N-terminal, whereas the BI alpha-helix probably nucleates within the C-terminal half. We also used quasielastic light scattering to demonstrate that the BI and BIII alpha-helix formation in 0.2 M Ca(ClO4)2 is accompanied by formation of trimers and hexamers, respectively.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号