首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Recent aspects of the subunit organization and dissociation of hemocyanins
Authors:T T Herskovits
Institution:Department of Chemistry, Fordham University, Bronx, NY 10458.
Abstract:1. The hemocyanins of the arthropod phylum are built of multiples of hexamers consisting of 1,2,4,6 and 8 of such basic assemblies. Their molecular weights range from about 0.45 x 10(6) to 3.9 x 10(6) daltons. The basic hexameric unit consists of bean-shaped monomers organized in the form of two layers of trimers placed on top of one another. The subunits are heterogeneous, in most cases consisting of four or more electrophoretically different polypeptide chains. 2. Molluscan hemocyanins have an entirely different structure and pattern of assembly from the arthropodan hemocyanins. The basic assembly of the molluscan hemocyanins are decamers organized in the form of right-handed cylinders approximately 300 A in diameter and 140-190 A in height. Different species have one, two and sometimes more than two such assemblies forming correspondingly longer cylindrical particles with molecular weights ranging from about 3.3 x 10(6) to 13 x 10(6) daltons. Cephalopod and chiton hemocyanins consist of single decameric particles, while gastropods have hemocyanins organized of di-decamers or higher assemblies. The subunits of these hemocyanins are elongated protein chains with seven or eight folded globular domains, each housing a binuclear copper center capable of binding and delivering oxygen. 3. The dissociation behavior of the arthropod hemocyanin hexamers and di-hexamers with the hydrophobic urea series of reagents suggest polar and ionic interactions as the main sources of stabilization of the hexamers and the hexamer to hexamer contacts within the di-hexamers. 4. Dissociation studies with the same urea probes with the molluscan hemocyanins, however, suggest a different pattern of stabilization. The stabilization of the decamer to decamer contacts within the gastropod di-decamers appear to be predominantly polar and ionic with relatively few hydrophobic interaction sites. The dimer contacts within the decamers and the monomer to monomer contacts within the dimers observed in the octopus and chiton hemocyanins appear to be predominantly hydrophobic in nature. 5. The urea and the pH dissociation profiles of the single decameric assemblies of some of the octopus and chiton hemocyanins investigated by light-scattering molecular weight methods, have been fitted using either a two-species, decamer to dimer and decamer to monomer scheme of subunit dissociation or a three-species, decamer to dimer to monomer scheme of dissociation.(ABSTRACT TRUNCATED AT 400 WORDS)
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号