Cerebrospinal Fluid from Sporadic Amyotrophic Lateral Sclerosis Patients Induces Mitochondrial and Lysosomal Dysfunction |
| |
Authors: | Aparna Sharma Anu Mary Varghese Kalyan Vijaylakshmi Rajendrarao Sumitha V. K. Prasanna S. Shruthi B. K. Chandrasekhar Sagar Keshava K. Datta Harsha Gowda Atchayaram Nalini Phalguni Anand Alladi Rita Christopher Talakad N. Sathyaprabha Trichur R. Raju M. M. Srinivas Bharath |
| |
Affiliation: | 1.Department of Neurophysiology,National Institute of Mental Health and Neurosciences (NIMHANS),Bangalore,India;2.Department of Neurochemistry,National Institute of Mental Health and Neurosciences (NIMHANS),Bangalore,India;3.Department of Neuropathology,National Institute of Mental Health and Neurosciences (NIMHANS),Bangalore,India;4.Department of Neurology,National Institute of Mental Health and Neurosciences (NIMHANS),Bangalore,India;5.Institute of Bioinformatics,Bangalore,India |
| |
Abstract: | In our laboratory, we have developed (1) an in vitro model of sporadic Amyotrophic Lateral Sclerosis (sALS) involving exposure of motor neurons to cerebrospinal fluid (CSF) from sALS patients and (2) an in vivo model involving intrathecal injection of sALS-CSF into rat pups. In the current study, we observed that spinal cord extract from the in vivo sALS model displayed elevated reactive oxygen species (ROS) and mitochondrial dysfunction. Quantitative proteomic analysis of sub-cellular fractions from spinal cord of the in vivo sALS model revealed down-regulation of 35 mitochondrial proteins and 4 lysosomal proteins. Many of the down-regulated mitochondrial proteins contribute to alterations in respiratory chain complexes and organellar morphology. Down-regulated lysosomal proteins Hexosaminidase, Sialidase and Aryl sulfatase also displayed lowered enzyme activity, thus validating the mass spectrometry data. Proteomic analysis and validation by western blot indicated that sALS-CSF induced the over-expression of the pro-apoptotic mitochondrial protein BNIP3L. In the in vitro model, sALS-CSF induced neurotoxicity and elevated ROS, while it lowered the mitochondrial membrane potential in rat spinal cord mitochondria in the in vivo model. Ultra structural alterations were evident in mitochondria of cultured motor neurons exposed to ALS-CSF. These observations indicate the first line evidence that sALS-CSF mediated mitochondrial and lysosomal defects collectively contribute to the pathogenesis underlying sALS. |
| |
Keywords: | |
本文献已被 SpringerLink 等数据库收录! |
|