首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Activation of soluble guanylyl cyclase by four-coordinate metalloporphyrins: evidence for a role for porphyrin conformation
Authors:Carr Heather S  Tran Dat  Reynolds Mark F  Burstyn Judith N  Spiro Thomas G
Institution:Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA.
Abstract:Four-coordinate metalloporphyrins activate soluble guanylyl cyclase. Ni(II)PPIX and Cu(II)PPIX are high affinity activators, with activation constants of 24 and 17 nM, respectively. Both metalloporphyrins remain stably bound to the enzyme, enabling spectroscopic characterization of the Ni(II)- and Cu(II)-reconstituted protein. Electronic absorption and resonance Raman spectroscopy reveal that Ni(II)PPIX remains four coordinate when bound to soluble guanylyl cyclase. Analysis of the vibrational frequencies of the Ni(II)-reconstituted enzyme suggests that the protein imposes a constraining force on the porphyrin, favoring a planar conformation. Spectroscopic data for the Cu(II)-substituted protein are also consistent with four coordination. The intensification of the vibrational modes of the peripheral vinyl groups in both Ni(II)- and Cu(II)-reconstituted soluble guanylyl cyclase are consistent with a substantial influence of the protein on the porphyrin environment. Together these data support a model where activation of soluble guanylyl cyclase correlates with the absence of a metal-to-proximal histidine bond and with decreased conformational freedom for the tetrapyrrole in the activated state.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号