Activation of bovine rod outer segment phosphatidylinositol-4,5-bisphosphate phospholipase C by calmodulin antagonists does not depend on calmodulin. |
| |
Authors: | B D Gehm R M Pinke S Laquerre J G Chafouleas D A Schultz D J Pepperl D G McConnell |
| |
Affiliation: | Department of Biochemistry, Michigan State University, East Lansing 48824. |
| |
Abstract: | Calmodulin antagonists stimulated phosphatidylinositol-4,5-bisphosphate phospholipase C in soluble and particulate fractions of bovine rod outer segments. Antagonists tested include trifluoperazine, melittin, calmidazolium, compound 48/80, W-13 [N-(4-aminobutyl)-5-chloro-1-naphthalenesulfonamide], and W-7 [N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide]. All were effective, but W-7 was chosen for further characterization of the effect, which was most pronounced in the soluble fraction. Phospholipase C activity in the soluble fraction did not increase linearly with the quality of enzyme assayed, suggesting the presence of an endogenous inhibitor or an inhibitory self-association of the enzyme. W-7 appeared to counteract this inhibition, resulting in a linear activity-quantity relationship. Stimulation by W-7 was therefore largest when large amounts of crude enzyme were assayed and small or nil when small amounts were assayed. The effect of W-7 was also dependent on [Ca2+], with half-maximal stimulation occurring between 0.1 and 1 microM. W-7 and W-13 were much more effective than their nonchlorinated analogues W-5 and W-12 at increasing phospholipase C activity. While this pattern of effectiveness is typical of calmodulin-mediated processes, the absence of any effect by added calmodulin and the retention of W-7 sensitivity by purified CaM-free enzyme argue against regulation by CaM. Octyl glucoside, a nonionic detergent, mimicked some of the effects of CaM antagonists, suggesting that the antagonists act by interfering with protein-protein interactions. It appears likely that CaM antagonists prevent an inhibitory multimerization or aggregation of at least one form of ROS phospholipase C. |
| |
Keywords: | |
|
|