首页 | 本学科首页   官方微博 | 高级检索  
     


Structural variability in manganese(II) complexes of N,N′-bis(2-pyridinylmethylene) ethane (and propane) diamine ligands
Authors:Iraklii I. Ebralidze  Linda J.W. Shimon  Sason Shaik
Affiliation:a Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
b Chemical Research Support Unit, Weizmann Institute of Science, Rehovot 76100, Israel
c Department of Organic Chemistry and the Lise Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University, Jerusalem 91904, Israel
Abstract:Manganese(II) complexes, Mn2L13(ClO4)4, MnL1(H2O)2(ClO4)2, MnL2(H2O)2(ClO4)2, and {(μ-Cl)MnL2(PF6)}2 based on N,N′-bis(2-pyridinylmethylene) ethanediamine (L1) and N,N′-bis(2-pyridinylmethylene) propanediamine (L2) ligands have been prepared and characterized. The single crystal X-ray diffraction analysis of Mn2L23(ClO4)4 shows that each of the two Mn(II) ion centers with a Mn-Mn distance of 7.15 Å are coordinated by one ligand while a common third ligand bridges the metal centers. Solid-state magnetic susceptibility measurements as well as DFT calculations confirm that each of the manganese centers is high-spin S = 5/2. The electronic structure obtained shows no orbital overlap between the Mn(II) centers indicating that the observed weak antiferromagentism is a result of through space interactions between the two Mn(II) centers. Under different reaction conditions, L1 and Mn(II) yielded a one-dimensional polymer, MnL1(H2O)2(ClO4)2. Ligand L2 when reacted with manganese(II) perchlorate gives contrarily to L1 mononuclear MnL2(H2O)2(ClO4)2 complex. The analysis of the structural properties of the MnL2(H2O)2(ClO4)2 lead to the design of dinuclear complex {(μ-Cl)MnL2(PF6)} where two chlorine atoms were utilized as bridging moieties. This complex has a rhomboidal Mn2Cl2 core with a Mn-Mn distance of 3.726 Å. At room temperature {(μ-Cl)MnL2(PF6)} is ferromagnetic with observed μeff = 4.04 μB per Mn(II) ion. With cooling, μeff grows reaching 4.81 μB per Mn(II) ion at 8 K, and then undergoes ferromagnetic-to-antiferromagnetic phase transition.
Keywords:Manganese(II) complex   Schiff base   Amine ligands   Structure
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号