首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Leaf variegation in the rice zebra2 mutant is caused by photoperiodic accumulation of tetra-Cis-lycopene and singlet oxygen
Authors:Su-Hyun Han  Yasuhito Sakuraba  Hee-Jong Koh  Nam-Chon Paek
Institution:(1) State Key Laboratory of Plant Genomics and National Centre for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No. 1 West Beichen Road, 100101 Chaoyang District, Beijing, China;(2) Yangzhou University, 650024 Yangzhou, Jiangsu Province, China;(3) China National Rice Research Institute, Chinese Academy of Agricultural Sciences, 310006 Hangzhou, Zhejiang Province, China
Abstract:In field conditions, the zebra2 (z2) mutant in rice (Oryza sativa) produces leaves with transverse pale-green/yellow stripes. It was recently reported that ZEBRA2 encodes carotenoid isomerase (CRTISO) and that low levels of lutein, an essential carotenoid for non-photochemical quenching, cause leaf variegation in z2 mutants. However, we found that the z2 mutant phenotype was completely suppressed by growth under continuous light (CL; permissive) conditions, with concentrations of chlorophyll, carotenoids and chloroplast proteins at normal levels in z2 mutants under CL. In addition, three types of reactive oxygen species (ROS; superoxide O2 ], hydrogen peroxide H2O2], and singlet oxygen 1O2]) accumulated to high levels in z2 mutants grown under short-day conditions (SD; alternate 10-h light/14-h dark; restrictive), but do not accumulate under CL conditions. However, the levels of lutein and zeaxanthin in z2 leaves were much lower than normal in both permissive CL and restrictive SD growth conditions, indicating that deficiency of these two carotenoids is not responsible for the leaf variegation phenotype. We found that the CRTISO substrate tetra-Cis-lycopene accumulated during the dark periods under SD, but not under CL conditions. Its accumulation was also positively correlated with 1O2 levels generated during the light period, which consequently altered the expression of 1O2-responsive and cell death-related genes in the variegated z2 leaves. Taking these results together, we propose that the z2 leaf variegation can be largely attributed to photoperiodic accumulation of tetra-cis-lycopene and generation of excessive 1O2 under natural day-night conditions.
Keywords:carotenoid isomerase  rice  singlet oxygen  tetra-cis-lycopene  zebra2
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号