首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The oxidation of tiron by superoxide anion. Kinetics of the reaction in aqueous solution in chloroplasts.
Authors:C L Greenstock  R W Miller
Abstract:The rate of reaction between superoxide anion (O2) and 1,2-dihydroxybenzene-3,5-disulfonic acid (tiron) was measured with pulse radiolysis-generated O2. A kinetic spectrophotometric method utilizing competition between p-benzoquinone and tiron for O2 was employed. In this system, the known rate of reduction of p-benzoquinone was compared with the rate of oxidation of tiron to the semiquinone. From the concentration dependence of the rate of tiron oxidation, the absolute second order rate constant for the reaction was determined to be 5x10-8 M-minus1-s-minus1. Ascorbate reduced O2 to hydrogen peroxide with a rate constant of 10-8 M-minus1-s-minus1 as determined by the same method. The tiron semiquinone may be used as an indicator free radical for the formation of superoxide anion in biological systems because of the rapid rate of oxidation of the catechol by O2 compared to the rate of O2 formation is most enzymatic systems. Tiron oxidation was used to follow the formation of superoxide anion in swollen chloroplasts. The chloroplasts photochemically reduced molecular oxygen which was further reduced to hydrogen peroxide by tiron. Tiron oxidation specifically required O2 since O2 was consumed in the reaction and tiron did not reduce the P700 cation radical or other components of Photosystem I under anaerobic conditions.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号