首页 | 本学科首页   官方微博 | 高级检索  
   检索      


New insights into the fatty acid-binding protein (FABP) family in the small intestine
Authors:Besnard  Philippe  Niot  Isabelle  Poirier  Hélène  Clément  Lionel  Bernard  André
Institution:(1) Laboratoire de Physiologie de la Nutrition, Ecole Nationale Supérieure de Biologie Appliquée à la Nutrition et à l'Alimentation (ENSBANA), FRE 2049 CNRS-CESG/Université de Bourgogne, Dijon, France
Abstract:Cyclic GMP is essential for the ability of rods and cones to respond to the light stimuli. Light triggers hydrolysis of cGMP and stops the influx of sodium and calcium through the cGMP-gated ion channels. The consequence of this event is 2-fold: first, the decrease in the inward sodium current plays the major role in an abrupt hyperpolarization of the cellular membrane; secondly, the decrease in the Ca2+ influx diminishes the free intracellular Ca2+ concentration. While the former constitutes the essence of the phototransduction pathway in rods and cones, the latter gives rise to a potent feedback mechanism that accelerates photoreceptor recovery and adaptation to background light. One of the most important events by which Ca2+ feedback controls recovery and light adaptation is synthesis of cGMP by guanylyl cyclase. Two isozymes of membrane photoreceptor guanylyl cyclase (retGC) have been identified in rods and cones that are regulated by Ca2+-binding proteins, GCAPs. At low intracellular concentrations of Ca2+ typical for light-adapted rods and cones GCAPs activate RetGC, but concentrations above 500 nM typical for dark-adapted photoreceptors turn them into inhibitors of retGC. A variety of mutations found in GCAP and retGC genes have been linked to several forms of human congenital retinal diseases, such as dominant cone degeneration, cone-rod dystrophy and Leber congenital amaurosis.
Keywords:photoreceptors  cGMP  retinal degeneration  guanylyl cyclase  GCAP  calcium-binding proteins
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号