首页 | 本学科首页   官方微博 | 高级检索  
     


Calmodulin
Authors:Ying Ming Lin
Affiliation:(1) Dept. of Chemistry, Tennessee State University Nashville, 37203, TN, USA
Abstract:Summary Ca2+ as an important cellular regulator has long been recognized. Calmodulin is unique among several proteins considered to be Ca2+ receptors in its ubiquitous distribution in eukaryotic cells and in its multiple effects through interaction with different enzymes and proteins. Apparently, calmodulin is the major Ca2+ receptor in most of these cells and most of metabolic active Ca2+ exists as a Ca2+-calmodulin complex.The importance of calmodulin as a Ca2+ mediator is also indicated by its role as the Ca2+-sensor in the regulation of Ca2+ pump which effectively maintains a low steady level of intracellular free Ca2+. The participation of calmodulin in the regulation of intracellular Ca2+ level suggests the desire for the cell to maintain adequate steady levels of metabolic active Ca2+. A low calmodulin concentration may in effect slow down the Ca2+ pump allowing a higher concentration of intracellular free Ca2+, but may also require higher Ca2+ threshold for Cat+ effects. A prominent difference in calmodulin contents of different eukaryotic cells has been noted and this difference may reflect the difference in the extents and the types of Ca2+-mediated reactions that operate in the cells. It is also possible that calmodulin concentration may fluctuate in response to different metabolic conditions. The evident for such possibility has been provided by the observations that cAMP-dependent protein kinase and ATP together with cAMP or neurotransmitters that stimulate cAMP synthesis cause the release of calmodulin from synaptic membranes (139, 140). However, the cytosolic calmodulin increased as the result of its release from the membranes is unlikely to be sufficient for eliciting calmodulin-mediated Ca2+ effects without a concomitant significant increase of intracellular Ca2+. The calmodulin release, in effect, may decrease the Ca2+ threshold of these effects.The manifestation of calmodulin-mediated Ca2+ effects in a particular type of cells appears determined mainly by the calmodulin-regulated enzymes existing in the cells. Within the same cells, however, the particular species of Ca2+-calmodulin complex serving as the active calmodulin, the affinity of the enzyme for the active calmodulin and the localization of the enzyme in the cells may determine the circumstance under which particular reactions are expressed.During the past years, substantial progress has been made in understanding calmodulin in terms of primary structure and molecular properties and in discovering many Ca2+-dependent, calmodulin-regulated enzymes and cellular activities. Our understanding of calmodulin and its relation to the wide range of Ca2+-dependent enzymes and activities has provided a framework for comprehending Ca2+ functions in the cells at the molecular level. Further works, however, are required to unravel fully the detailed mechanisms and properties that govern the calmodulin-enzyme interactions and to narrow further the gaps between Ca2+-elicited cellular expressions and the molecular events that lead to such expressions.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号