首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Drought stress affects response of phytopathogen vectors and their parasitoids to infection‐ and damage‐induced plant volatile cues
Authors:XAVIER MARTINI  LUKASZ L STELINSKI
Institution:1. Department of Entomology and Nematology, North Florida Research and Education Center, University of Florida, Quincy, Florida, U.S.A.;2. Department of Entomology and Nematology, Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, U.S.A.
Abstract:1. The response of a phytopathogen vector to pathogen‐induced plant volatiles was investigated, as well as the response of the phytopathogen vector's parasitoid to herbivore‐induced plant volatiles released from plants with and without drought stress. 2. These experiments were performed with Asian citrus psyllid (Diaphorina citri), vector of the plant pathogen Candidatus Liberibacter asiaticus (CLas) and its parasitoid Tamarixia radiata as models. Candidatus Liberibacter asiaticus is the presumed causal pathogen of huanglongbing (HLB), also called citrus greening disease. 3. Diaphorina citri vectors were attracted to headspace volatiles of CLas‐infected citrus plants at 95% of their water‐holding capacity (WHC); such attraction to infected plants was much lower under drought stress. Attraction of the vector to infected and non‐stressed plants was correlated with greater release of methyl salicylate (MeSA) as compared with uninfected and non‐stressed control citrus plants. Drought stress decreased MeSA release from CLas‐infected plants as compared with non‐stressed and infected plants. 4. Similarly, T. radiata was attracted to headspace volatiles released from D. citri‐infested citrus plants at 95% of their WHC. However, wasps did not show preference between headspace volatiles of psyllid‐infested and uninfested plants when they were at 35% WHC, suggesting that herbivore‐induced defences did not activate to recruit this natural enemy under drought stress. 5. Our results demonstrate that herbivore‐ and pathogen‐induced responses are environmentally dependent and do not occur systematically following damage. Drought stress affected both pathogen‐ and herbivore‐induced plant volatile release, resulting in concomitant decreases in behavioural response of both the pathogen's vector and the vector's primary parasitoid.
Keywords:Citrus greening  climate change  induced plant volatiles  volatile organic compounds  water stress
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号