首页 | 本学科首页   官方微博 | 高级检索  
     

基于时间聚类分析和独立成分分析的癫痫fMRI盲分析方法
引用本文:钟元,王惠南,卢光明,郑罡,张志强,刘一军. 基于时间聚类分析和独立成分分析的癫痫fMRI盲分析方法[J]. 生物物理学报, 2008, 24(3): 245-250
作者姓名:钟元  王惠南  卢光明  郑罡  张志强  刘一军
作者单位:1. 南京航空航天大学自动化学院生物医学工程系,南京,210016;南京军区南京总医院医学影像科,南京,210002
2. 南京航空航天大学自动化学院生物医学工程系,南京,210016
3. 南京军区南京总医院医学影像科,南京,210002
4. Department of Psychiatry & Neuroscience, University of Florida, Florida 32610,USA
摘    要:提出了一种基于时间聚类分析和独立成分分析的癫痫fMRI数据盲分析方法,并将两种方法有效联合,提取发作间期的癫痫fMRI激活时空信息.该方法首先由时间聚类分析得到与激活相关的时间峰度特征曲线,以此特征作为时间参考信息;再由空间独立成分分析分解fMRI信号得到空间独立成分;最后将每个独立成分所对应的时间曲线与参考曲线做相关分析提取相应脑激活图.提出的方法无需任何关于癫痫fMRI的先验假设信息,有效解决了独立成分的排序问题,实现了对数据的盲分析.仿真试验结果阐明了这一方法的有效性及可靠性,对癫痫数据的试验结果显示空间定位准确性优于统计参数图方法.

关 键 词:独立成分分析  时间聚类分析  功能磁共振成像  癫痫  盲分析  时间聚类分析  独立成分分析  癫痫  fMRI  图方法  INDEPENDENT COMPONENT ANALYSIS  CLUSTERING ANALYSIS  TEMPORAL  BASED  DATA  统计参数  定位准确  显示  仿真试验  有效性  结果  排序问题  有效解决  先验假设  脑激活图
收稿时间:2007-12-10

Blind analysis of fMRI data based on temporal clustering analysis and independent component analysis
ZHONG Yuan,WANG Hui-nan,LU Guang-ming,ZHENG Gang,ZHANG Zhi-qiang,LIU Yi-jun. Blind analysis of fMRI data based on temporal clustering analysis and independent component analysis[J]. Acta Biophysica Sinica, 2008, 24(3): 245-250
Authors:ZHONG Yuan  WANG Hui-nan  LU Guang-ming  ZHENG Gang  ZHANG Zhi-qiang  LIU Yi-jun
Affiliation:1.Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
2.Department of Medical Imaging, Nanjing Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing 210002, China;
3. Department of Psychiatry & Neuroscience, University of Florida, Gainesville, Florida 32610, USA
Abstract:A blind analysis procedure combined temporal clustering analysis and independent component analysis approaches for epileptic fMRI was suggested in this paper, by which tempo-spatial characteristics of interictal epileptic fMRI activities dynamic responses can be investigated simultaneously. First, temporal clustering analysis was utilized to obtain temporal kurtosis pattern of the brain activity,
and the pattern was considered as temporal reference function; subsequently, spatial independent component analysis was employed to decompose fMRI signals into independent spatial patterns, each pattern being associated with a temporal course; finally, only the component for which corresponding time course was the most correlated with the reference function was considered. The proposed method could carry out blind analysis of epileptic fMRI data, and robustly recognize the components represented with brain activation without any prior information. The ordering of independent components was resolved effectively. The validity and reliability of the presented method were confirmed by simulated results. In vivo epileptic fMRI data analysis, the method was superior to the statistic parameter mapping (SPM) method on the accuracy of spatial localization.
Keywords:Independent component analysis  Temporal clustering analysis  Functional magnetic resonance imaging (fMRI)  Epilepsy  Blind analysis
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《生物物理学报》浏览原始摘要信息
点击此处可从《生物物理学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号