首页 | 本学科首页   官方微博 | 高级检索  
   检索      


pH-induced flocculation,indirect electrocoagulation,and hollow fiber filtration techniques for harvesting the saltwater microalga Dunaliella
Authors:Stephanie M Mixson  Larry F Stikeleather  Otto D Simmons III  Cameron W Wilson  JoAnn M Burkholder
Institution:1. Center for Applied Aquatic Ecology, North Carolina State University, 620 Hutton Street, Suite 104, Raleigh, NC, 27606, USA
2. Department of Biological and Agricultural Engineering, North Carolina State University, NCSU Campus, Raleigh, NC, 27695, USA
Abstract:This research assessed the efficacy of three harvesting methods on a strain of Dunaliella viridis. While there is strong potential to use lipids from microalgae as a feedstock for biofuels to replace petroleum-based fuel, at present microalgal harvesting for biofuel production is not yet economically feasible or energy efficient. pH-induced flocculation (by adjusting the pH of exponentially growing cells), indirect electrocoagulation (applying aluminum hydroxide coagulant to culture), and hollow fiber filtration (separating biomass from medium using tangential flow) were compared as potential harvesting mechanisms for small-scale (3–10 L) and large-scale (30–150 L) volumes of D. viridis. Both pH-induced flocculation and electrocoagulation yielded significant biomass recovery (>95 %), but both methods required removal of added chemicals and/or coagulant before the medium could be reused. In contrast, hollow fiber filtration did not require added chemicals or coagulant, and as another advantage, the filtrate was successfully reused as culture medium without apparent detrimental effects on cell size, cell shape, or cell production. When high salinity stress was imposed on the concentrate produced from the filtration method, total fatty acids (FAs) did not increase. However, total FAs did significantly increase after hollow fiber filtration (49 %) in comparison to FA content before filtration (36 %). This research indicates that hollow fiber filtration as a commercial harvesting mechanism offers attractive advantages as a harvesting mechanism for microalgae such as Dunaliella, relative to pH-induced flocculation and indirect electrocoagulation.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号