首页 | 本学科首页   官方微博 | 高级检索  
     


Direct and biochemical interaction between dopamine D3 receptor and elongation factor-1Bbetagamma
Authors:Cho Dong-Im  Oak Min-Ho  Yang Hee-Jin  Choi Hoo-Kyun  Janssen George M C  Kim Kyeong-Man
Affiliation:Department of Pharmacology and Research Institute of Drug Development, College of Pharmacy, Chonnam National University, Kwang-Ju 500-757, South Korea.
Abstract:Novel signaling components of dopamine D3 receptor (D3R) were searched using yeast two-hybrid system, and the gamma subunit of elongation Factor-1B (eEF1Bgamma) was found to interact with D3R. This interaction was observed specifically between eEF1Bgamma and D3R but not with D2R or D4R. Immunocytochemical studies showed that D3R and eEF1Bgamma form clusters on the plasma membrane and their co-localization was evident in these clusters. The beta subunit of eEF1B (eEF1Bbeta), which forms a tight complex with eEF1Bgamma, was phosphorylated on serine residues in response to the stimulation of D3R. Phosphorylation of eEF1Bbeta was insensitive to pertussis toxin or wortmannin, however, stimulation of cellular protein kinase C (PKC) directly phosphorylated eEF1Bbeta and depletion of PKC abolished D3R-mediated phosphorylation of eEF1Bbeta. These results suggest the involvement of PKC, but not Gi/o proteins or phosphatidylinositol 3-kinase, in D3R-mediated phosphorylation of eEF1Bbeta. Stimulation of D3R did not activate PKC, but the activation of PKC resulted in the phosphorylation of D3R. These results show that PKC has a permissive role for the D3R-mediated phosphorylation of eEF1Bbeta, and suggest that PKC could modulate the mutual interaction between two protein by phosphorylating both D3R and eEF1Bbeta. Therefore, the cellular PKC level would be important for the D3R-mediated modulation of eEF1B, and for their cellular regulations such as protein synthesis or cellular proliferation.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号