Neomycin inhibits K+- and veratridine-stimulated noradrenaline release in rat brain slices and rat brain synaptosomes |
| |
Authors: | S Diamant B Avraham D Atlas |
| |
Affiliation: | Department of Biological Chemistry and The Otto Loewi Center for Neurobiology, Institute of Life Sciences, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel |
| |
Abstract: | The possible involvement of phosphoinositides' turnover in the process of neurotransmitter release in the central nervous system (CNS) was studied using rat brain slices and synaptosomes. A depolarizing concentration of potassium chloride (25 mM) induces an 8.6 +/- 0.4% increase of [3H]noradrenaline [( 3H]NA) fractional release in cerebral cortical slices above spontaneous release, and 15 mM KCl induces a 3-fold increase of [3H]NA release in rat brain synaptosomes. Neomycin, an aminoglycoside which binds phosphoinositides, inhibits the potassium-induced release in cortical slices with an IC50 = 0.5 +/- 0.07 mM and with IC50 = 0.2 +/- 0.03 mM in synaptosomes. Veratridine, a veratrum alkaloid which increases membrane permeability to sodium ions and causes depolarization of neuronal cells, induces a net 13.4 +/- 0.3% increase of [3H]NA fractional release above spontaneous release in cortical slices. In analogy to K+ stimulation, neomycin inhibits the veratridine-stimulated release in cortical slices with an IC50 = 0.65 +/- 0.1 mM. It appears that the recycling of phosphoinositides, which is necessary for Ca2+ mobilization, participates in the Ca2+-dependent induced neurotransmitter release in the central nervous system. |
| |
Keywords: | |
本文献已被 ScienceDirect 等数据库收录! |
|