Abstract: | A microphotometric technique that displays rapid length changes of Spirostomum has been used to follow the variation with temperature of three kinetic parameters of myonemal contraction: contraction rate, relaxation rate and stimulus duration at threshold. In each case the exponential form of the relationship indicated that the gross rate constant might be equated with the limiting rate constant, k, of a driving chemical reaction, and from standard expressions of chemical kinetics the change in activation free energy appropriate to this reaction has been computed. The thermal dependence of contraction is described by an activation enthalpy (ΔLH?) of 21.7 kcal mol?1, and the activation entropy (ΔLS?) of 26.8 e.u. is consistent with a model of contraction requiring neutralization of fixed myonemal charges by divalent cations. The analysis of thermal dependence of relaxation gives a negative activation entropy, a result predicted for a rate-limiting reaction involving dissociation of a neutral molecule. On the other hand, values of ΔLS? and ΔLH? for relaxation fall close to an isokinetic correlation drawn in the literature from analysis of the thermal dependence of ciliary beat frequency in different organisms, and for which breakdown of an ATP-ATPase complex could be the common rate-limiting reaction. ΔLS? for stimulus duration suggests that the rate-limiting step in excitation-contraction coupling is a reaction between ions of like charge, or ion pair formation from a neutral molecule. |