首页 | 本学科首页   官方微博 | 高级检索  
     


Effect of Terminalia arjuna on antioxidant defense system in cancer
Authors:Verma  Nibha  Vinayak  Manjula
Affiliation:(1) Biochemistry and Molecular Biology Laboratory, Centre of Advanced Study in Zoology, Banaras Hindu University, Varanasi, 221005, India
Abstract:Constant production of reactive oxygen species (ROS) during aerobic metabolism is balanced by antioxidant defense system of an organism. Although low level of ROS is important for various physiological functions, its accumulation has been implicated in the pathogenesis of age-related diseases such as cancer and coronary heart disease and neurodegenerative disorders such as Alzheimer’s disease. It is generally assumed that frequent consumption of phytochemicals derived from vegetables, fruits, tea and herbs may contribute to shift the balance towards an adequate antioxidant status. The present study is aimed to investigate the effect of aqueous extract of medicinal plant Terminalia arjuna on antioxidant defense system in lymphoma bearing AKR mice. Antioxidant action of T. arjuna is monitored by the activities of catalase, superoxide dismutase and glutathione S transferase which constitute major antioxidant defense system by scavenging ROS. These enzyme activities are low in lymphoma bearing mice indicating impaired antioxidant defense system. Oral administration of different doses of aqueous extract of T. arjuna causes significant elevation in the activities of catalase, superoxide dismutase and glutathione S transferase. T. arjuna is found to down regulate anaerobic metabolism by inhibiting the activity of lactate dehydrogenase in lymphoma bearing mice, which was elevated in untreated cancerous mice. The results indicate the antioxidant action of aqueous extract of T. arjuna, which may play a role in the anti carcinogenic activity by reducing the oxidative stress along with inhibition of anaerobic metabolism.
Keywords:Terminalia arjuna   Catalase  Superoxide dismutase  Glutathione S transferase  Antioxidant action  Lactate dehydrogenase  Reactive oxygen species
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号