首页 | 本学科首页   官方微博 | 高级检索  
     


The two-stranded alpha-helical coiled-coil is an ideal model for studying protein stability and subunit interactions.
Authors:N E Zhou  B Y Zhu  C M Kay  R S Hodges
Affiliation:Department of Biochemistry, University of Alberta, Edmonton, Canada.
Abstract:We have designed de novo a two-stranded alpha-helical coiled-coil which consists of two identical 35-residue polypeptide chains arranged in a parallel and in-register alignment. Their structure is stabilized by interchain hydrophobic interactions from hydrophobes at positions "a" and "d" of a repeating heptad sequence. The formation and stability of the coiled-coil is dependent on peptide concentration due to the monomer-dimer equilibrium. In contrast, that coiled-coil containing an inter-helical disulfide bond does not show any concentration dependence in the guanidine hydrochloride denaturation experiments as expected. Replacement of one large hydrophobic Leu residue in each chain with Ala significantly decreases coiled-coil stability in both the reduced and oxidized coiled-coils [decreases in transition midpoint of 1.6M (2.3-0.7) and 2.4M (5.3-2.9), respectively]. A large pH dependence on coiled-coil stability is observed over the pH range 4 to 7 (transition midpoints at pH 4, 5, 5.5, 6 and 7 were 3.8, 3.2, 2.0, 1.2 and 0.7M, respectively). The increasing stability with decreasing pH correlates with the protonation of the Glu acid side-chains and reduction of intrachain repulsions between Glu-Glu side-chains in positions i, i + 3 or i, i + 4 along each alpha-helix of the coiled-coil. In addition, coiled-coil stability increases with increasing ionic strength.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号