首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Use of the transposable element Ac/Ds in conjunction with Spm/dSpm for gene tagging allows extensive genome coverage with a limited number of starter lines: functional analysis of a four-element system in Arabidopsis thaliana
Authors:Priya Panjabi  Pradeep Kumar Burma  Deepak Pental
Institution:(1) Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
Abstract:We have developed a novel four-element based gene tagging system in Arabidopsis to minimize the number of starter lines required to generate genome-wide insertions for saturation mutagenesis. In this system, the non-autonomous cassette, Ds(dSpm), comprises of both Ds and dSpm elements cloned one within the other along with appropriate selection markers to allow efficient monitoring of excision and re-integration of the transposons. Trans-activation of the outer borders (Ds) and selection against the negative selection marker (iaaH) linked to the cassette ensures unlinked spread of the Ds(dSpm) cassette from the initial site of integration of the T-DNA. This creates several launch pads within the genome from where the internal element (dSpm) can be subsequently mobilized to generate secondary insertions. In this study, starting from a single T-DNA integration we could spread the Ds(dSpm) cassette to 11 different locations over all the five chromosomes of Arabidopsis. The frequency of unlinked Ds transpositions in the F2 generation varied between 0.05 and 3.35%. Three of these lines were then deployed to trans-activate the internal dSpm element which led to the selection of 29 dSpm insertions. The study conclusively shows the feasibility of deploying Ds and the dSpm elements in a single construct for insertional mutagenesis.
Keywords:Ac/Ds                Four-element system  Insertional mutagenesis                  Spm/dSpm                Transposons
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号