首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Influence of K-Cl cotransporter activity on activation of volume-sensitive Cl- channels in human osteoblasts
Authors:Bräuer Margot  Frei Eva  Claes Lutz  Grissmer Stephan  Jäger Heike
Institution:Department of Applied Physiology, University of Ulm, 89081 Ulm, Germany. heike.jaeger@medizin.uni-ulm.de
Abstract:The whole cell recording mode of the patch-clamp technique was used to study the effect of hypotonic NaCl or isotonic high-KCl solution on membrane currents in a human osteoblast-like cell line, C1. Both hypotonic NaCl or isotonic high-KCl solution activated Cl channels expressed in these cells as described previously. The reversal potential of the induced Cl current is more negative when activated through hypotonic NaCl solution (–47 ± 5 mV; n = 6) compared with activation through isotonic high-KCl solution (–35 ± 3 mV; n = 8). This difference can be explained by an increase in intracellular Cl] through the activity of a K-Cl cotransporter. Potassium aspartate was unable to activate the current, and furosemide or DIOA suppressed the increase in Cl current induced by isotonic high-KCl solution. In addition, we used the polymerase chain reaction to demonstrate the presence of KCC1–KCC4 mRNA in the osteoblast-like cell line. From these results, we conclude that human osteoblasts express functional K-Cl cotransporters in their cell membrane that seem to be able to induce the indirect activation of volume-sensitive Cl channels by KCl through an increase in the intracellular ion concentration followed by water influx and cell swelling. potasium-chloride cotransporter; KCC1–KCC4; chloride channels; extracellular potassium concentration buffering
Keywords:
本文献已被 PubMed 等数据库收录!
点击此处可从《American journal of physiology》浏览原始摘要信息
点击此处可从《American journal of physiology》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号