首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Synthesis, location, and lateral mobility of fluorescently labeled ubiquinone 10 in mitochondrial and artificial membranes
Authors:K Rajarathnam  J Hochman  M Schindler  S Ferguson-Miller
Institution:Department of Biochemistry, Michigan State University, East Lansing 48824.
Abstract:To explore the influence of the long isoprene chain of ubiquinone 10 (UQ) on the mobility of the molecule in a phospholipid bilayer, we have synthesized a fluorescent derivative of the head-group moiety of UQ and measured its lateral diffusion in inner membranes of giant mitochondria and in large unilamellar vesicles. The diffusion coefficients, determined by the technique of fluorescence redistribution after photobleaching, were 3.1 X 10(-9) cm2 s-1 in mitochondria and 1.1 X 10(-8) cm2 s-1 in vesicles. Similar diffusion rates were observed for fluorescently labeled phosphatidylethanolamine (PE) with the same moiety attached to its head group (4-nitro-2,1,3-benzooxadiazole: NBD). Fluorescence emission studies carried out in organic solvents of different dielectric constants, and in vesicles and mitochondrial membranes, indicate that NBDUQ is located in a more hydrophobic environment than NBDPE or the starting material IANBD (4-N-(iodoacetoxy)ethyl]-N-methylamino]-7-nitro-2,1,3- benzoxadiazole). Fluorescence quenching studies carried out with CuSO4, a water-soluble quenching agent, also indicate that NBDUQ is located deeper in the membrane than NBDPE. These results suggest that ubiquinone and PE are oriented differently in a membrane, even though their diffusion rates are similar. Conclusions regarding whether or not diffusion of UQ is a rate-limiting step in electron transfer must await a more detailed knowledge of the structural organization and properties of the electron transfer components.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号