Affiliation: | a Faculty of Chemistry, Department of Inorganic Chemistry, Al. I. Cuza University, 11 Carol I Blvd, 6600 Iasi, Romania b Laboratory of Bioinorganic and Bioorganic Chemistry, Institute of Molecular Chemistry Orsay, Bat. 420, Paris-Sud University, 91405 Orsay, France c Laboratory of Asymmetric Synthesis, Institute of Molecular Chemistry Orsay, Bat. 420, Paris-Sud University, 91405 Orsay, France |
Abstract: | The synthesis and characterization of some new complexes with tetradentate Schiff bases derived from bis(salicylaldehyde)etylenediimine, H2Salen are reported in this paper. The Co(II) Schiff bases complexes investigated are: (bis(5-nitro-salicylaldehyde) ethylenediiminato)cobalt(II), (CoNSalen); (bis(-ethyl-salicylaldehyde) ethylenediiminato)cobalt(II) (CoEtSalen); (bis(-ethyl-3,5-diiode-salicylaldehyde) ethylenediiminato) cobalt(II),(CoDIEtSalen); (bis(,5-dimethyl-3-iode-salicylaldehyde)ethylenediiminato)cobalt(II) (CoDMISalen) and (bis(salicylaldehyde)methylene-p,p′-diphenylene)cobalt(II), (CoSalmbfn). The characterization of the complexes was performed by elemental analysis, UV–Vis, FTIR spectroscopy, powder X-ray diffraction and cyclic voltammetry. Pyridine (py), present in the solution of complexes in DMF, coordinates to the metal ion in axial position, inducing a significant decrease of the redox potentials. Significant influences have the substituents grafted on ligands’ molecules. The separated complexes evince catalytic activity in the oxidation reaction of 2,6-di-t-butylphenol with molecular oxygen. These complexes seem capable of forming reversible adducts with molecular oxygen. |