首页 | 本学科首页   官方微博 | 高级检索  
     


IL-27 Enhances the Expression of TRAIL and TLR3 in Human Melanomas and Inhibits Their Tumor Growth in Cooperation with a TLR3 Agonist Poly(I:C) Partly in a TRAIL-Dependent Manner
Authors:Yukino Chiba  Izuru Mizoguchi  Kana Mitobe  Kaname Higuchi  Hiroshi Nagai  Chikako Nishigori  Junichiro Mizuguchi  Takayuki Yoshimoto
Affiliation:1. Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan.; 2. Department of Immunology, Tokyo Medical University, Tokyo, Japan.; 3. Division of Dermatology, Department of Clinical Molecular Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan.; Juntendo University School of Medicine, Japan,
Abstract:Interleukin (IL)-27 is a member of the IL-6/IL-12 cytokine family and possesses potent antitumor activity, which is mediated by multiple mechanisms. Toll-like receptor (TLR)3 is the critical sensor of the innate immune system that serves to identify viral double-stranded RNA. TLR3 is frequently expressed by various types of malignant cells, and recent studies reported that a synthetic TLR3 agonist, polyinosinic-polycytidylic acid [poly(I:C)], induces antitumor effects on malignant cells. In the present study, we have explored the effect of IL-27 on human melanomas and uncovered a previously unknown mechanism. We found that IL-27 inhibits in vitro tumor growth of human melanomas and greatly enhances the expression of TNF-related apoptosis inducing ligand (TRAIL) in a dose-dependent manner. Neutralizing antibody against TRAIL partly but significantly blocked the IL-27–mediated inhibition of tumor growth. In addition, IL-27 and poly(I:C) cooperatively augmented TRAIL expression and inhibited tumor growth. The cooperative effect could be ascribed to the augmented expression of TLR3, but not retinoic acid-inducible gene-I or anti-melanoma differentiation-associated gene 5, by IL-27. The inhibition of tumor growth by the combination was also significantly abrogated by anti-TRAIL neutralizing antibody. Moreover, IL-27 and poly(I:C) cooperatively suppressed in vivo tumor growth of human melanoma in immunodeficient mice. Taken together, these results suggest that IL-27 enhances the expression of TRAIL and TLR3 in human melanomas and inhibits their tumor growth in cooperation with poly(I:C), partly in a TRAIL-dependent manner. Thus, IL-27 and the combination of IL-27 and poly(I:C) may be attractive candidates for cancer immunotherapy.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号