Effects of Membrane Trafficking on Signaling by Receptor Tyrosine Kinases |
| |
Authors: | Marta Miaczynska |
| |
Affiliation: | International Institute of Molecular and Cell Biology, Laboratory of Cell Biology, 02-109 Warsaw, Poland |
| |
Abstract: | The intracellular trafficking machinery contributes to the spatial and temporal control of signaling by receptor tyrosine kinases (RTKs). The primary role in this process is played by endocytic trafficking, which regulates the localization of RTKs and their downstream effectors, as well as the duration and the extent of their activity. The key regulatory points along the endocytic pathway are internalization of RTKs from the plasma membrane, their sorting to degradation or recycling, and their residence in various endosomal compartments. Here I will review factors and mechanisms that modulate RTK signaling by (1) affecting receptor internalization, (2) regulating the balance between degradation and recycling of RTK, and (3) compartmentalization of signals in endosomes and other organelles. Cumulatively, these mechanisms illustrate a multilayered control of RTK signaling exerted by the trafficking machinery.At the cellular level, receptor tyrosine kinases (RTKs) need to be properly localized to function as signal-receiving and signal-transmitting devices (Lemmon and Schlessinger 2010). To receive signals (i.e., to bind extracellular ligands), RTKs have to be exposed at the surface of the plasma membrane. To transmit signals after ligand binding by RTKs, appropriate signaling components have to be available within intracellular compartments: in the cytoplasm, in association with membrane-bound organelles and in the cell nucleus. Importantly, the intracellular distribution of RTKs and their associated partners is not static but undergoes dynamic changes in different phases of signaling, as reflected for example by endocytic internalization of activated RTKs (Scita and Di Fiore 2010). Therefore, to function properly, the whole RTK signaling machinery within the cell has to be organized and tightly controlled both in space and in time. This organization and control are ensured by intracellular trafficking machineries, mainly by membrane transport systems such as endocytosis and secretion but also by other distribution systems (e.g., responsible for nucleocytoplasmic shuttling of proteins).Recent years have brought increasing evidence that intracellular membrane trafficking, in particular endocytic internalization, degradation, and recycling, can profoundly affect the signaling properties of RTKs (Mukherjee et al. 2006; Abella and Park 2009; Lemmon and Schlessinger 2010; Scita and Di Fiore 2010; Grecco et al. 2011; Sigismund et al. 2012). The changes in the amounts of RTKs at the cell surface can alter the cellular responses when ligands are abundant (Grecco et al. 2011). In turn, the presence of a given RTK at the plasma membrane is determined by the rates of three trafficking processes: delivery of newly synthesized molecules by the secretory pathway, their internalization (occurring for both ligand-bound and ligand-free molecules), and endocytic recycling. Although the molecular details concerning the regulation of RTK delivery to the plasma membrane are not well known, numerous studies document various mechanisms by which internalization and recycling of RTKs can be modulated, thus affecting the signaling outputs (Le Roy and Wrana 2005). In addition to the regulation of RTKs at the cell surface, trafficking processes control the intracellular fate of endocytosed RTKs. Following internalization, RTKs can be either targeted for lysosomal degradation, or recycled back to the plasma membrane (Mukherjee et al. 2006; Abella and Park 2009; Scita and Di Fiore 2010). The first route results in the termination of signaling, whereas the second allows for sustained signaling if the ligand is available. Usually degradation and recycling of a given RTK can occur simultaneously but the balance between them is crucial to determine the net signaling output. Again, the molecular mechanisms that can shift the fate of internalized RTKs between degradation and recycling, thus changing RTK signaling, have begun to emerge in recent years (Polo and Di Fiore 2006; von Zastrow and Sorkin 2007; Sorkin and von Zastrow 2009; Sigismund et al. 2012). Finally, in contrast to an early view that only RTKs present at the plasma membrane are signaling competent, it is now accepted that in many cases activated RTKs can emit signals also after internalization into intracellular compartments (Miaczynska et al. 2004b; Miaczynska and Bar-Sagi 2010; Platta and Stenmark 2011). In some cell types (e.g., in neurons), such “signaling endosomes” are crucial for signal propagation within the cell and for the final cellular response. Moreover, endosomes can serve as platforms for amplification and compartmentalization of signals emitted by RTKs (Sadowski et al. 2009; Platta and Stenmark 2011).In this article, I will review factors and mechanisms that modulate RTK signaling by (1) affecting receptor internalization, (2) regulating the balance between degradation and recycling of RTK, and (3) compartmentalization of signals in endosomes and other organelles. As the membrane trafficking system of a cell is highly interconnected and can be considered a global dynamic continuum, it is important to note that often one primary alteration at a given stage of RTK trafficking may affect other transport steps or compartments, thus causing generalized changes in the intracellular routing and signaling of RTKs. |
| |
Keywords: | |
|
|