首页 | 本学科首页   官方微博 | 高级检索  
     


Regional Brain Atrophy and Functional Connectivity Changes Related to Fatigue in Multiple Sclerosis
Authors:álvaro Javier Cruz Gómez  Noelia Ventura Campos  Antonio Belenguer  César ávila  Cristina Forn
Affiliation:1. Departament de Psicología Bàsica, Clínica i Psicobiología, Universitat Jaume I, Castelló de la Plana, Castellón, Spain.; 2. Servicio de Neurología, Hospital General de Castellón, Castelló de la Plana, Castellón, Spain.; Beijing Normal University, China,
Abstract:Fatigue is one of the most frequent symptoms in multiple sclerosis (MS), and recent studies have described a relationship between the sensorimotor cortex and its afferent and efferent pathways as a substrate of fatigue. The objectives of this study were to assess the neural correlates of fatigue in MS through gray matter (GM) and white matter (WM) atrophy, and resting state functional connectivity (rs-FC) of the sensorimotor network (SMN). Eighteen healthy controls (HCs) and 60 relapsing-remitting patients were assessed with the Fatigue Severity Scale (FSS). Patients were classified as fatigued (F) or nonfatigued (NF). We investigated GM and WM atrophy using voxel-based morphometry, and rs-FC changes with a seed-based method and independent component analysis (ICA). F patients showed extended GM and WM atrophy focused on areas related to the SMN. High FSS scores were associated with reductions of WM in the supplementary motor area. Seed analysis of GM atrophy in the SMN showed that HCs presented increased rs-FC between the primary motor and somatosensory cortices while patients with high FSS scores were associated with decreased rs-FC between the supplementary motor area and associative somatosensory cortex. ICA results showed that NF patients presented higher rs-FC in the primary motor cortex compared to HCs and in the premotor cortex compared to F patients. Atrophy reduced functional connectivity in SMN pathways and MS patients consequently experienced high levels of fatigue. On the contrary, NF patients experienced high synchronization in this network that could be interpreted as a compensatory mechanism to reduce fatigue sensation.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号