首页 | 本学科首页   官方微博 | 高级检索  
     


The Scutellaria baicalensis R2R3-MYB Transcription Factors Modulates Flavonoid Biosynthesis by Regulating GA Metabolism in Transgenic Tobacco Plants
Authors:Yuan Yuan  Chong Wu  Yunjun Liu  Jian Yang  Luqi Huang
Affiliation:1. National Resource Center for Chinese Materia Medica, Academy of Chinese Medical Sciences, Beijing, China.; 2. Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China.; Key Laboratory of Horticultural Plant Biology (MOE), China,
Abstract:R2R3-MYB proteins play role in plant development, response to biotic and abiotic stress, and regulation of primary and secondary metabolism. Little is known about the R2R3-MYB proteins in Scutellaria baicalensis which is an important Chinese medical plant. In this paper, nineteen putative SbMYB genes were identified from a S. baicalensis cDNA library, and eleven R2R3-MYBs were clustered into 5 subgroups according to phylogenetic reconstruction. In the S. baicalensis leaves which were sprayed with GA3, SbMYB2 and SbMYB7 had similar expression pattern with SbPALs, indicating that SbMYB2 and SbMYB7 might be involved in the flavonoid metabolism. Transactivation assay results showed that SbMYB2 and SbMYB7 can function as transcriptional activator. The expression of several flavonoid biosynthesis-related genes were induced or suppressed by overexpression of SbMYB2 or SbMYB7 in transgenic tobacco plants. Consistent with the change of the expression of NtDH29 and NtCHI, the contents of dicaffeoylspermidine and quercetin-3,7-O-diglucoside in SbMYB2-overexpressing or SbMYB7-overexpressing transgenic tobacco plants were decreased. The transcriptional level of NtUFGT in transgenic tobacco overexpressing SbMYB7 and the transcriptional level of NtHCT in SbMYB2-overexpressing tobacco plants were increased; however the application of GA3 inhibited the transcriptional level of these two genes. These results suggest that SbMYB2 and SbMYB7 might regulate the flavonoid biosynthesis through GA metabolism.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号