首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Computer simulation of intraventricular flow and pressure gradients during diastole
Authors:Vierendeels J A  Riemslagh K  Dick E  Verdonck P R
Institution:Department of Flow, Heat, and Combustion Mechanics, Institute Biomedical Technology, Ghent University, St.-Pietersnieuwstraat 41, 9000 Ghent, Belgium.
Abstract:A two-dimensional axisymmetric computer model is developed for the simulation of the filling flow in the left ventricle (LV). The computed results show that vortices are formed during the acceleration phases of the filling waves. During the deceleration phases these are amplified and convected into the ventricle. The ratio of the maximal blood velocity at the mitral valve (peak E velocity) to the flow wave propagation velocity (WPV) of the filling wave is larger than 1. This hemodynamic behavior is also observed in experiments in vitro (Steen and Steen, 1994, Cardiovasc. Res., 28, pp. 1821-1827) and in measurements in vivo with color M-mode Doppler echocardiography (Stugaard et al., 1994, J. Am. Coll. Cardiol., 24, 663-670). Computed intraventricular pressure profiles are similar to observed profiles in a dog heart (Courtois et al., 1988, Circulation, 78, pp. 661-671). The long-term goal of the computer model is to study the predictive value of noninvasive parameters (e.g., velocities measured with Doppler echocardiography) on invasive parameters (e.g., pressures, stiffness of cardiac wall, time constant of relaxation). Here, we show that higher LV stiffness results in a smaller WPV for a given peak E velocity. This result may indicate an inverse relationship between WPV and LV stiffness, suggesting that WPV may be an important noninvasive index to assess LV diastolic stiffness, LV diastolic pressure and thus atrial pressure (preload).
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号