首页 | 本学科首页   官方微博 | 高级检索  
     


Novel activity of Escherichia coli mismatch uracil-DNA glycosylase (Mug) excising 8-(hydroxymethyl)-3,N4-ethenocytosine, a potential product resulting from glycidaldehyde reaction
Authors:Hang Bo  Downing Gary  Guliaev Anton B  Singer B
Affiliation:Donner Laboratory, Life Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720, USA. Bo_Hang@lbl.gov
Abstract:Glycidaldehyde is an industrial chemical which has been shown to be genotoxic in in vitro experiments and carcinogenic in rodent studies. It is a bifunctional alkylating agent capable of reacting with DNA to form exocyclic hydroxymethyl-substituted ethenobases. In this work, 8-(hydroxymethyl)-3,N4-etheno-2'-deoxycytidine (8-HM-epsilondC), a potential nucleoside derivative of glycidaldehyde, was synthesized using phosphoramidite chemistry and site-specifically incorporated into a defined 25-mer oligodeoxynucleotide. The 8-HM-epsilonC adduct is structurally related to 3,N4-ethenocytosine (epsilonC), a product of reaction with vinyl chloride or through lipid peroxidation. In Escherichia coli, epsilonC has been shown previously to be a primary substrate for the mismatch uracil-DNA glycosylase (Mug). In this study, we report that the same glycosylase also acts on 8-HM-epsilonC in an oligonucleotide duplex. The enzyme binds to the 8-HM-epsilonC-oligonucleotide to a similar extent as the epsilonC-oligonucleotide. The Mug excision activity toward 8-HM-epsilonC is approximately 2.5-fold lower than that toward the epsilonC substrate. Both activities can be stimulated up to approximately 2-fold higher by the addition of E. coli endonuclease IV. These two adducts, when mispaired with normal bases, were all excised from DNA by Mug with similar efficiencies. Structural studies using molecular simulations showed similar adjustment and hydrogen bonding pattern for both 8-HM-epsilonC*G and epsilonC*G pairs in oligomer duplexes. We believe that these findings may have biological and structural implications in defining the role of 8-HM-epsilonC in glycosylase recognition/repair.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号