首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Superoxide dismutase enhances chain-breaking antioxidant capability of hydroquinones
Authors:Vitaly Roginsky
Institution:N.N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Kosygin St. 4, 117977, Moscow, Russia
Abstract:2-tert-butyl-(1), 2,6-dimethyl-(2), 2,5-dimethyl-(3), trimethyl-(4), and 2,3-dimethoxy-5-methyl-(5) substituted p-hydroquinones (QH2) were tested as a chainbreaking antioxidant during the oxidation of methyl linoleate (ML) in dodecyl sulfate micellar solution, pH 7.40, at 37°C. In the absence of superoxide dismutase (SOD), all the studied QH2 displayed very moderate if any antioxidant capability. When 5–25 U/ml SOD was added, QH2 showed a pronounced ability to inhibit ML oxidation. The stoichiometric factor of inhibition was found to be about one for all the tested QH2 in the presence of SOD. The reactivities of QH2 to the ML peroxy radical increase in the order QH25 < QH2 3 < QH21≈QH22 < QH24; reactivity of QH24 exceds that reported for the majority of phenolic antioxidants. The features of QH2 as an antioxidant in aqueous environment is likely associated with the reactivity of semiquinone (O·-) formed due to attack of the peroxy radical to QH2. O·- reacts readily with molecular oxygen with formation of superoxide (O·-2); in turn, O·-2 attacks both to QH2 and ML (likely, as HO·2) that results in fast depleting QH2 and chain propagation, respectively. The addition of SOD results in purging a reaction mixture from O·-2 and, as a corollary, in depressing undesirable reactions with the participation of O·-2. Under these conditions, QH2 displays the theoretically highest inhibitory activity which is determined solely by the reactivity of QH2 to the peroxy radical.
Keywords:Chain-breaking antioxidant  lipid peroxidation  inhibition  hydroquinones  superoxide dismutase  methyl linoleate
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号