Ca2+ influx stimulated by vasopressin is mediated by phosphoinositide hydrolysis in rat smooth muscle cells |
| |
Authors: | K Kondo O Kozawa K Takatsuki Y Oiso |
| |
Affiliation: | First Department of Internal Medicine, Nagoya University School of Medicine, Japan. |
| |
Abstract: | The mechanism of Ca2+ influx stimulated by arginine vasopressin (AVP) was studied in cultured rat smooth muscle cells. AVP stimulated 45Ca2+ influx even in the presence of nifedipine, a Ca2+ antagonist that inhibits voltage-dependent Ca2+ channel. NaF, a GTP-binding protein activator, mimicked the AVP-stimulated 45Ca2+ influx. The 45Ca2+ influx stimulated by a combination of AVP and NaF was not additive. The affinity of AVP receptor was decreased by guanosine 5'-O-(3-thiotriphosphate). Pertussis toxin failed to affect the AVP-stimulated 45Ca2+ influx. AVP did not stimulate cAMP production, but increased inositol trisphosphate generation. Both AVP-stimulated 45Ca2+ influx and inositol trisphosphate generation were inhibited by neomycin, a phospholipase C inhibitor, in a dose-dependent manner, and the patterns of both inhibitions were similar. These results suggest that, in rat smooth muscle cells, AVP-stimulated Ca2+ influx is mediated exclusively through phosphoinositide hydrolysis. |
| |
Keywords: | |
|
|