首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Methandrostenolone metabolism in humans: potential problems associated with isolation and identification of metabolites
Authors:L M Harrison  P V Fennessey
Institution:Department of Pediatrics, University of Colorado Health Sciences Center, Denver 80262.
Abstract:Methandrostenolone dose (amount and duration) and methods of isolation from urine can influence the identification and quantitation of methandrostenolone metabolites. Long-term use of methandrostenolone at high dosages led to the appearance of unmetabolized drug in the urine and contributed to the identification of a previously unreported metabolite, 3 beta, 6 section, 17 beta-trihydroxy-17 alpha-methyl-5 section-1-androstene. Exposure of methandrostenolone in vitro to acid conditions induced a retropinacol rearrangement in the D-ring of the methandrostenolone molecule, causing the formation of 18-nor-17,17-dimethyl-1,4,13(14)-androstatrien-3-one in large amounts. The same acidic conditions led to the addition of a hydroxyl at the 6 position of the B-ring of either the retropinacol rearrangement products or native methandrostenolone resulting in the formation of 6 beta-hydroxy-18-nor-17,17-dimethyl-1,4,13(14)-androstatrien-3-one, 6 alpha- hydroxy-18-nor-17,17-dimethyl-1,4,13(14)-androstatrien, 6 beta-17 alpha-methyl-1,4-androstadien-3-one and 6 alpha,17 beta-dihydroxy-17 alpha-methyl-1,4-androstadien-3-one. Hydroxylation of native methandrostenolone at the 6 position also occurs endogenously. However, no evidence of an endogenous retropinacol rearrangement was found. Silylating agents alone can induce the formation of small amounts of 6 beta-17 beta-dihydroxy-17 alpha-methyl-1,4-androstadien-3-one. Discrepancies between previously published reports on methandrostenolone metabolism in man are discussed and compared with an animal model.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号