首页 | 本学科首页   官方微博 | 高级检索  
     


The stoichiometry of photorespiration during C3-photosynthesis is not fixed: evidence from combined physical and stereochemical methods
Authors:K R Hanson  R B Peterson
Abstract:The stoichiometry of photorespiration, S, is defined as the fraction of glycolate carbon photorespired. It is postulated that under steady-state conditions there are two determinants of the ratio of photorespiration to net photosynthesis: the partitioning of ribulose bisphosphate between oxidation and carboxylation, and the partitioning of glycolate between reactions leading to complete oxidation to CO2 (S = 100%) and those yielding CO2 plus serine (S = 25%). S may be calculated using two independent probes of the system. The physical probe, using an infrared gas analyzer, measured photorespiration and net photosynthesis, and hence their ratio PR/NPS = pn(phys). The metabolic probe employed tracer (3R)-D-[3-3H1,3-14C]glyceric acid to determine r, the fraction of 3H retained in the triose phosphates leaving the chloroplasts. It is deduced from the postulated model that S = pn(phys) . r/(1 - r). Experiments have been performed with illuminated tobacco leaf discs (inverted) under varying concentrations of O2 and CO2. Increasing O2 at constant CO2 increased pn(phys) and decreased r, whereas increasing CO2 at constant O2 had the opposite effect. S more than doubled at 32 degrees C on going from 16 to 40% O2 (340 microliters CO2/liter) and decreased 40% on going from 200 to 700 microliters CO2/liter (21% O2). For discs in normal air S was somewhat greater than 27%. It is suggested that net photosynthesis, and therefore crop yields, could be increased by selecting for crop plants with reduced photorespiration stoichiometry.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号