首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Mechanism of dissociation of human apolipoprotein A-I from complexes with dimyristoylphosphatidylcholine as studied by guanidine hydrochloride denaturation
Authors:D J Reijngoud  M C Phillips
Abstract:The reversibility of the binding of human apolipoprotein A-I (apo A-I) to phospholipid has been monitored through the influence of guanidine hydrochloride (Gdn-HCl) on the isothermal denaturation and renaturation of apo A-1/dimyristoylphosphatidylcholine (DMPC) complexes at 24 degree C. Denaturation was studied by incubating discoidal 1:100 and vesicular 1:500 mol/mol apo A-I/DMPC complexes with up to 7 M Gdn-HCl for up to 72 h. Unfolding of apo A-I molecules was observed from circular dichroism spectra while the distribution of protein between free and lipid-associated states was monitored by density gradient ultracentrifugation. The ability of apo A-I to combine with DMPC in the presence of Gdn-HCl at 24 degrees C was also investigated by similar procedures. In both the denaturation and renaturation of 1:100 and 1:500 complexes, the final values of the molar ellipticity and the ratio of free to bound apo A-I at various concentrations of Gdn-HCl are dependent on the initial state of the lipid and protein; apo A-I is more resistant to denaturation when Gdn-HCl is added to existing complexes than to a mixture of apo A-I and DMPC. There is an intermediate state in the denaturation pathway of apo A-I/DMPC complexes which is not present in the renaturation; the intermediate comprises partially unfold apo A-I molecules still associated with the complex by some of their apolar residues. Complete unfolding of the alpha helix and subsequent desorption of the apo A-I molecules from the lipid/water interface involve cooperative exposure of these apolar residues to the aqueous phase. The energy barrier associated with this desorption step makes the binding of apo A-I to DMPC a thermodynamically irreversible process. Consequently, binding constants of apo A-I and PC cannot be calculated simply from equilibrium thermodynamic treatments of the partitioning of protein between free and bound states. Apo A-I molecules do not exchange freely between the lipid-free and lipid-bound states, and extra work is required to drive protein molecules off the surface. The required increased in surface pressure can be achieved by a net mass transfer of protein to the surface; in vivo, increases in the surface pressure of lipoproteins by lipolysis can cause protein desorption.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号