首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Predicting the helix‐helix interactions from correlated residue mutations
Authors:Haipeng Gong
Institution:1. MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China;2. Beijing Innovation Center of Structural Biology, Tsinghua University, Beijing, China
Abstract:Helix‐helix interactions are crucial in the structure assembly, stability and function of helix‐rich proteins including many membrane proteins. In spite of remarkable progresses over the past decades, the accuracy of predicting protein structures from their amino acid sequences is still far from satisfaction. In this work, we focused on a simpler problem, the prediction of helix‐helix interactions, the results of which could facilitate practical protein structure prediction by constraining the sampling space. Specifically, we started from the noisy 2D residue contact maps derived from correlated residue mutations, and utilized ridge detection to identify the characteristic residue contact patterns for helix‐helix interactions. The ridge information as well as a few additional features were then fed into a machine learning model HHConPred to predict interactions between helix pairs. In an independent test, our method achieved an F‐measure of ~60% for predicting helix‐helix interactions. Moreover, although the model was trained mainly using soluble proteins, it could be extended to membrane proteins with at least comparable performance relatively to previous approaches that were generated purely using membrane proteins. All data and source codes are available at http://166.111.152.91/Downloads.html or https://github.com/dpxiong/HHConPred .
Keywords:helix‐helix interactions  machine learning  ridge detection  residue contact map  protein structure prediction
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号