首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Insights into the transmembrane helix associations of kit ligand by molecular dynamics simulation and TOXCAT
Authors:Fude Sun  Peng Wei  Peng Chen  Lida Xu  Shi‐Zhong Luo
Institution:1. Beijing Key Laboratory of Bioprocess College of Life Science and Technology, Beijing, University of Chemical Technology, Beijing, China;2. School of Basic Medical Science, Beijing University of Chinese Medicine, Beijing, China
Abstract:Kit ligand (KITL) plays important roles in cell proliferation, differentiation, and survival via interaction with its receptor Kit. The previous studies demonstrated that KITL formed a noncovalent homodimer through transmembrane (TM) domain; however, the undergoing mechanism of transmembrane association that determines KITL TM dimerization is still not clear. Herein, molecular dynamics (MD) simulation strategy and TOXCAT assay were combined to characterize the dimerization interface and structure of KITL TM in details. KITL TM formed a more energetically favorable noncovalent dimer through a conserved SxxxGxxxG motif in the MD simulation. Furthermore, the TOXCAT results demonstrated that KITL TM self‐associated strongly in the bilayer membrane environment. Mutating any one of the small residues Ser11, Gly15 or Gly19 to Ile disrupted KITL TM dimerization dramatically, which further validated our MD simulation results. In addition, our results showed that Tyr22 could help to stabilize the TM interactions via interacting with the phosphoric group in the bilayer membrane. Pro7 did not induce helix kinks or swivel angles in KITL TM, but it was related with the pitch of the turn around this residue so as to affect the dimer formation. Combining the results of computer modeling and experimental mutagenesis studies on the KITL TM provide new insights for the transmembrane helix association of KITL dimerization. Proteins 2017; 85:1362–1370. © 2017 Wiley Periodicals, Inc.
Keywords:kit ligand  transmembrane domain  dimerization  molecular dynamic simulation  TOXCAT  SxxxGxxxG motif
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号