Variation of the mitochondrial genome in the evolution of Drosophila |
| |
Authors: | Mitrofanov V G Sorokina S Iu Andrianov B V |
| |
Affiliation: | Kol'tsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, 117334 Russia. |
| |
Abstract: | The evidence on mitochondrial genome variation and its role in evolution of the genus Drosophila are reviewed. The mitochondrial genome is represented by a circular double-stranded DNA molecule 16 to 19 kb in length. The genome contains no introns involved in recombination. The entire mitochondrial genome can be arbitrarily divided into three parts: (1) protein-coding genes; (2) genes encoding rRNA and tRNA; and (3) the noncoding regulatory region (A + T region). The selective importance of mutations within different mtDNA regions is therefore unequal. In Drosophila, the content of the A + T pairs in mtDNA is extremely low and a pattern of nucleotide substitution is characterized by a low transition/transversion ratio (and a low threshold of mutation saturation). The deletions and duplications are of common occurrence in the mitochondrial genome. However, this genome lacks such characteristic for the nuclear genome aberrations as the inversions and transpositions. The phenomena of introgression and heteroplasmy provide an opportunity to study the adaptive role of the mitochondrial genome and its role in speciation. Analysis of evidence concerning mtDNA variation in different species of the genus Drosophila made it possible to ascertain data on phylogenetic relationships among species obtained by studying nuclear genome variation. In some species, mtDNA variation may serve as a reliable marker for population differentiation within a species, although evidence on the population dynamics of the mtDNA variation is very scarce. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|