首页 | 本学科首页   官方微博 | 高级检索  
     


Selective oxidation of mitochondrial glutathione in cultured rat adrenal cells and its relation to polycyclic aromatic hydrocarbon-induced cytotoxicity
Authors:E Hallberg  J Rydstr?m
Affiliation:Department of Biochemistry, Arrhenius Laboratory, University of Stockholm, Sweden.
Abstract:Primary cultures of rat adrenal cells, as well as rat adrenals in vivo, are sensitive to the potent carcinogen 7,12-dimethylbenz[a]anthracene and its liver metabolite 7-hydroxymethyl-12-methylbenz[a]anthracene, whereas unmethylated polycyclic aromatic hydrocarbons like benzo[a]pyrene or benzo[a]anthracene are ineffective. The adrenocorticolytic potencies of the hydrocarbons are affected by adrenocorticotrophic hormone and various steroids, cytochrome P450 inhibitors, and antioxidants. In the present investigation digitonin was used to fractionate cultured rat adrenal cells. It was found that the mitochondria and cytosol of the cells contained 3-5 nmol/10(6) cells (approximately 15%) and 20-30 nmol/10(6) cells (approximately 85%) of the total soluble cellular glutathione equivalents, respectively. After exposing the cells to 7-hydroxymethyl-12-methylbenz[a]anthracene in the culture medium, a time- and concentration-dependent selective oxidation of mitochondrial glutathione was observed, whereas the effect on the cytosolic glutathione was negligible. Under the same conditions, 7,12-dimethylbenz[a]anthracene and benzo[a]pyrene were unable to alter the redox levels of the subcellular pools of glutathione. Omission of adrenocorticotrophic hormone lowered the oxidation of mitochondrial glutathione induced by 7-hydroxymethyl-12-methylbenz[a]anthracene about twofold. The results suggest that rat adrenal cells contain two separate pools of glutathione, one cytosolic and one mitochondrial, of which the latter is selectively influenced by 7-hydroxymethyl-12-methylbenz[a]anthracene. Moreover, it is concluded that rat adrenal cells offer a unique model system for general studies of the effects of a selective oxidation of mitochondrial glutathione on various cell functions. These effects may constitute early changes in cytotoxicity, preceding, e.g., membrane damage and loss of cytosolic components.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号