首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The power of Drosophila in modeling human disease mechanisms
Authors:Esther M Verheyen
Institution:Department of Molecular Biology and Biochemistry, Centre for Cell Biology, Development and Disease, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada, V5A 1S6
Abstract:Six years ago, DMM launched a subject collection called ‘Drosophila as a Disease Model’. This collection features Review-type articles and original research that highlight the power of Drosophila research in many aspects of human disease modeling. In the ensuing years, Drosophila research has further expanded to capitalize on genome editing, development of resources, and further interest in studying rare disease mechanisms. In the current issue of DMM, we again highlight the versatility, breadth, and scope of Drosophila research in human disease modeling and translational medicine. While many researchers have embraced the power of the fly, many more could still be encouraged to appreciate the strengths of Drosophila and how such research can integrate across species in a multi-pronged approach. Only when we truly acknowledge that all models contribute to our understanding of human biology, can we take advantage of the scope of current research endeavors.

Summary: This Editorial encourages us to embrace the power of the fly in studying human disease and highlights how Drosophila studies can be integrated with research in other species to further our understanding of human biology.

For over a century, scientists have used the fruit fly to learn about fundamental and evolutionarily conserved genetic and cellular processes. The pioneering work of Thomas Hunt Morgan and his students, in the early 20th century, proved that genes are located on chromosomes and led to the first chromosome linkage maps (Morgan, 1910). In the 1980s, Ed Lewis, Christiane Nüsslein-Volhard and Eric Wieschaus showed that individual genes could be mutated to cause characteristic embryonic patterning defects (Lewis, 1978; Nüsslein-Vollhard and Wieschaus, 1980). Their genetic studies allowed them to order genes within functional pathways through epistasis analyses. The genes they identified have counterparts across species and play key roles in development and disease from flies to humans. Indeed, much of the molecular circuitry for key signaling pathways, such as RAS, Notch, Hedgehog and Wnt, was elucidated in Drosophila (Ashton-Beaucage and Therrien, 2017; Bejsovec, 2018; Ingham, 2018; Salazar and Yamamoto, 2018). This rich history has established Drosophila as a powerful tool in biology, paving the way for further advances in basic and translational research.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号