首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Some properties of the redox components of cytochrome c oxidase and their interactions.
Authors:D F Wilson  M Erecińska  C S Owen
Institution:Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19174 U.S.A.
Abstract:The electron paramagnetic resonance (epr) properties of cytochrome c oxidase have been examined with special attention to the effect of added ligands and of interactions between the redox components. The fully oxidized preparations have a very small g6 signal which increases greatly as the redox potential is made more negative, a process exactly paralleling the disappearance of the g3 signal. The potential for half appearance or disappearance (Em), respectively, is 380 mV at pH 7.0 and 300 mV at pH 8.5. This identifies the changes as accompanying reduction of cytochrome a3 because the Em of the “invisible copper” is 340 mV and pH independent. Nitric oxide (NO) binds reduced cytochrome a3 to form a paramagnetic species. This resulting epr signal is strongly dependent on the redox state of cytochrome a, another expression of heme-heme interaction in cytochrome oxidase. The NO compound is also unique in that under the appropriate conditions three of the four redox components (cytochrome a3, cytochrome a, and the “visible” copper) are epr active. In potentiometric titrations in the presence of azide the formation of the azide compound responsible for the g2.9 signal appears to require reduction of both cytochrome a3 and the “invisible copper.” An internal sulfur compound is present which, at alkaline pH values, can bind the heme responsible for the g6 signal and change it to a low-spin sulfur compound with a signal at approximately g2.6. Evidence is also presented for the cytochrome c oxidase in situ being an equilibrium mixture of two different conformational states.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号