首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Horizontal and vertical movement of Pseudomonas fluorescens toward exudate of Macrophomina phaseolina in soil: influence of motility and soil properties
Authors:Singh Tanuja  Srivastava Alok K  Arora Dilip K
Institution:Laboratory of Applied Mycology, Center of Advanced Study in Botany, Banaras Hindu University,Varanasi, India.
Abstract:The role of motility and cell surface hydrophobicity in transport and dispersal of Pseudomonas fluorescens strains LAM1-hydrophilic, LAM2-hydrophobic and LAM(NM) (non-motile mutant of LAM2) under different soil conditions was studied. Maximum adhesion was recorded for LAM2 in clay loam (70%), followed by sandy loam (68%) and sandy soil (40%). Vertical migration of P fluorescens isolates in soils was recorded at 5 and 25 cm flow of wafer or M. phaseolina exudate. In all the treatments, LAM1 exhibited maximum migration followed, by LAM2 and LAM(NM). The rate of migration of such isolates was lowered in water irrigated soils compared to those irrigated with M. phaseolina exudate. In sandy soil, cells of LAM1 migrated up to 13 cm in comparison to LAM2 (11 cm) and LAN(NM) (9 cm) at 5 cm flow of fungal exudate. Population of LAM1, LAM2 and LAM(NM) was 5.7, 5.68 and 5.61 log cfu g(-1) soil at 1 cm depth, but it decreased to 2.56, 2.21 and 1.99 log cfu during migration up to 11 cm in sandy soil at 5 cm flow of fungal exudate. Greater motility was observed in sandy soil irrigated with water or fungal exudate, followed by sandy loam and clay loam. In general, filtration coefficient (lambda) of P. fluorescens was higher in soils irrigated with 5 cm of water or exudate than with 25 cm of irrigation. The horizontal movement of P. fluorescens strains in sandy soil adjusted at different psi m showed marked reduction with decrease in psi m. The non-motile LAN(NM) did not show chemotactic response and migrated up to a maximum of 3 mm in saturated soils (0 kPa). After 96 h, LAM1 and LAM2 migrated upto 35 and 29 mm respectively in sandy soil. Motile isolates had significantly greater colonization of M. phaseolina sclerotia over the non-motile mutant.
Keywords:Macrophomina phaseolina  Pseudomonas fluorescens  chemotaxis  motility
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号