首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Effects of ionic and complexed metal concentrations on plant uptake of cadmium and micronutrient metals from solution
Authors:R T Checkai  R B Corey  P A Helmke
Institution:(1) Department of Soil Science, University of Wisconsin-Madison, 53706, WI, USA;(2) Present address: US Plant Soil and Nutrition Laboratory, Cornell University, Tower Road, 14853 Ithaca, NY, USA
Abstract:Summary Uptake of Cd and micronutrient metals by intact tomato plants (Lycopersicon esculentum, cv. Wisconsin-55) from solution cultures was investigated by establishing four levels of Cd-ion activity in the presence or absence of a metal-complexing agent (±EDTA). Activity ratios of Cd, Cu, Mn, Ni, and Zn were controlled with chelating resin while activity ratios of K, Ca, and Mg were controlled with a strong-acid cation-exchange resin. Hydrogen ion activity was controlled with a weak-acid cation-exchange resin and P activity by a cation-exchange resin containing adsorbed polynuclear hydroxy-Al. The concentrations of all nutrients and Cd were maintained at concentrations similar to those occuring in solutions of sludge-amended soils. The EDTA treatments increased the concentrations of Cu and Ni in hydroponic solution by approximately four orders of magnitude, Zn by two orders of magnitude, Cd by a factor of 50, Mn by a factor of 2.4, and Fe by a factor of 1.6 Neither the Cd nor the EDTA treatments affected plant yield, and Cd treatments did not significantly affect uptake of other elements. EDTA treatments inhibited Fe uptake, enhanced Cu uptake, and had little effect on the uptake of Cd, Zn, and Mn. Accumulation of Cd, Zn, Mn, and Cu in plant shoots appears to be related to their respective ionic activities rather than their concentrations in hydroponic solution. Research supported by the College of Agricultural and Life Sciences, University of Wisconsin-Madison and by the United States Environmental Protection Agency through Grant CR807270010.
Keywords:Cadmium  Chelates  Copper  Hydroponics  Ion activity  Iron  Manganese  Speciation  Tomato  Zinc
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号