首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Fcepsilon RI control of Ras via inositol (1,4,5) trisphosphate 3-kinase and inositol tetrakisphosphate
Authors:Stokes Alexander J  Shimoda Lori M N  Lee Jae Wook  Rillero Cora  Chang Young-Tae  Turner Helen
Institution:Laboratory of Cell Biology and Immunology, Center for Biomedical Research at the Queen's Medical Center, Honolulu, HI, USA.
Abstract:The inositol (1,4,5) trisphosphate 3-kinase (ITP3K) phosphorylates Ins (1,4,5) P3 to produce Ins (1,3,4,5) P4. The ITP3K substrate, InsP3, and its product, InsP4, both have the potential to regulate mast cell function. Here, we explore the effects of dominant inhibition of ITP3K upon secretory responses and Ras GTPase activation following antigenic cross-linking of the mast cell immunoreceptor, FcvarepsilonRI. Inhibition of ITP3K potentiates both calcium release from intracellular stores and calcium-dependent secretory responses in mast cells. Moreover, mast cells with dominantly inhibited ITP3K display constitutive activation of Ras and certain Ras effector pathways. We propose three mechanisms by which ITP3K inhibition could influence Ras activation. The protection of InsP3 that results from ITP3K inhibition may lead to enhanced activation of calcium-sensitive Ras-GAPs or -GRFs. Similarly, the deficit in InsP4 may change the behavior of the InsP4 receptor, the GAP1(IP4BP). Our data are inconsistent with calcium-sensitive Ras-GAP activation being the primary consequence of ITP3K inhibition in mast cells. Rather, we observe potentiation of Ras responses in mast cells transfected with dominant negative GAP1(IP4BP). Moreover, shRNA-mediated knockdown of GAP1(IP4BP) potentiates FcvarepsilonRI-mediated Ras activation, indicating that this InsP4-binding GAP protein may be used by the FcvarepsilonRI immunoreceptor to regulate Ras.
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号