首页 | 本学科首页   官方微博 | 高级检索  
     


The flexibility of actin filaments as revealed by fluorescence resonance energy transfer. The influence of divalent cations
Authors:Nyitrai M  Hild G  Belágyi J  Somogyi B
Affiliation:Research Group of the Hungarian Academy of Sciences at, P. O. 99, H-7601 Pécs, Hungary.
Abstract:The temperature profile of the fluorescence resonance energy transfer efficiency normalized by the fluorescence quantum yield of the donor in the presence of acceptor, f', was measured in a way allowing the independent investigation of (i) the strength of interaction between the adjacent protomers (intermonomer flexibility) and (ii) the flexibility of the protein matrix within actin protomers (intramonomer flexibility). In both cases the relative increase as a function of temperature in f' is larger in calcium-F-actin than in magnesium-F-actin in the range of 5-40 degrees C, which indicates that both the intramonomer and the intermonomer flexibility of the actin filaments are larger in calcium-F-actin than those in magnesium-F-actin. The intermonomer flexibility was proved to be larger than the intramonomer one in both the calcium-F-actin and the magnesium-F-actin. The distance between Gln41 and Cys374 residues was found to be cation-independent and did not change during polymerization at 21 degrees C. The steady-state fluorescence anisotropy data of fluorophores attached to the Gln41 or Cys374 residues suggest that the microenvironments around these regions are more rigid in the magnesium-loaded actin filament than in the calcium-loaded form.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号