首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Polymerase zeta dependency of increased adaptive mutation frequencies in nucleotide excision repair-deficient yeast strains
Authors:Heidenreich Erich  Holzmann Veronika  Eisler Herfried
Institution:Division of Molecular Genetics, Institute of Cancer Research, University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria. erich.heidenreich@univie.ac.at
Abstract:Reversions of an auxotrophy-causing frameshift allele during prolonged starvation of yeast cells were used as a means to elucidate the mechanisms concerned with the generation of spontaneous adaptive mutations in cell cycle-arrested cells. Whereas about 50% of these reversions were previously shown to depend on the non-homologous end joining pathway of DNA double-strand break repair, the origin of the residual 50% remains unknown. In search for a mechanism for generation of the latter fraction of reversions we examined the role of the translesion synthesis (TLS) polymerases zeta, eta and Rev1p in cells with wild-type or impaired nucleotide excision repair (NER) capacity. The basal level of adaptive mutations in the repair-proficient wild type was not influenced by disruptions of the genes coding for these three TLS polymerases. Intriguingly, a deficiency in NER by disruption of RAD14, RAD16 or RAD26 resulted in a significantly higher frequency of adaptive mutation, yet this increase was strictly dependent on an intact REV3 gene, coding for the catalytic subunit of polymerase zeta. Furthermore, we observed that intact REV3 was also required for the occurrence of increased frequencies of adaptive mutants in the NER-proficient wild type following UV irradiation. While in proliferating cells the translesion synthesis function of polymerase zeta is connected to DNA replication, our data suggest that in cell cycle-arrested cells this enzyme is able to carry out either TLS or error-prone polymerization along an undamaged template in the course of repair processes. Such a hitherto unappreciated activity of polymerase zeta in non-replicating cells may contribute to the incidence of mutations in evolution, aging and cancer.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号