首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Disruption of ET-1 gene enhances pulmonary responses to methacholine via functional mechanism in knockout mice.
Authors:T Nagase  H Kurihara  Y Kurihara  T Aoki-Nagase  R Nagai  Y Ouchi
Institution:Department of Geriatric Medicine, Faculty of Medicine, University of Tokyo, Tokyo 113-8655, Japan. takahide-tky@umin.ac.jp
Abstract:Endothelin (ET)-1 has been shown to have various pathophysiological roles in the lung. Recently, it has been reported that ET-1 and a gene encoding ET-1 (Edn1) might be involved in airway hyperresponsiveness, which is a major feature of bronchial asthma. Meanwhile, it remains unclear whether ET-1 might be involved in airway remodeling in vivo. In the present study, we hypothesized whether ET-1 might play a role in airway remodeling, leading to altered responsiveness. To test this hypothesis, we investigated airway function in vivo and airway wall structure in Edn1(+/-) heterozygous knockout mice, which genetically produce lower levels of ET-1, and Edn1(+/+) wild-type mice. In the physiological study, enhanced responses in lung elastance and resistance to methacholine administration were observed in Edn1(+/-) mice, whereas there was no difference in serotonin responsiveness. In the morphometric study, there were no differences in either lamina propria or airway smooth muscle thickness between Edn1(+/-) mice and Edn1(+/+) mice. These findings suggest that ET-1 gene disruption is involved in methacholine pulmonary hyperresponsiveness via functional mechanism, but not airway remodeling, in mice. The ET-1 knockout mice may provide appropriate models to study diseases related to ET-1 metabolism.
Keywords:
点击此处可从《Journal of applied physiology (Bethesda, Md. : 1985)》浏览原始摘要信息
点击此处可从《Journal of applied physiology (Bethesda, Md. : 1985)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号