首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Molecular modeling of two-photon absorption and third-order nonlinearities of polymethine dyes for all-optical switching
Authors:Yuanzuo Li  Ying Shi  Maodu Chen  Yongqing Li  Runzhou Su  Meiyu Zhao  Fengcai Ma
Institution:College of Science, Northeast Forestry University, Harbin, 150040, People's Republic of China. yuanzuo.li@yahoo.com.cn
Abstract:Stimulated by a recent experimental report Hales JM et al. (2010) Science 327:1485-1488], two-photon absorption and third-order optical nonlinearities of selenopyrylium- and bis(dioxaborine)-terminated polymethine dyes (called SE-7C and DOB-9C) used for all-optical switching were investigated theoretically with time-dependent DFT (TD-DFT) and response theory as well as visualized real-space analysis. The calculated results for the first hyperpolarizability and second hyperpolarizability demonstrated that the two molecules both have large third-order optical nonlinearities. Using real-space analysis, we were able to visually determine that in the one-photon absorption (OPA) process, the first singlet excited state of SE-7C and DOB-9C is an intramolecular charge transfer (ICT) excited state with strong absorption, while the second excited state of these dyes (also termed the "ICT state") shows weak absorption. However, in the two-photon absorption (TPA) process, a larger TPA absorption cross-section was predicted for the second excited state. In this paper, we describe the properties of the S2 excited state, incorporating charge transfer and the transition moment, via real-space analysis, which was very important for understanding the TPA characteristics of the S(2) state.
Keywords:
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号