首页 | 本学科首页   官方微博 | 高级检索  
     


Mechanical characterization of network formation during heat-induced gelation of whey protein dispersions
Authors:Ikeda S  Nishinari K  Foegeding E A
Affiliation:Department of Food and Nutrition, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan.
Abstract:The formation of gel network structures during isothermal heating of whey protein aqueous dispersions was probed by mechanical spectroscopy. It was anticipated that the pathway of the sol-to-gel transition of whey protein dispersions is quite different from that of ordinary cross-linking polymers (e.g., percolation-type transition), since aqueous solutions of native whey proteins have been shown to be highly structured even before gelation, in our previous study. At 20 degrees C, aqueous dispersions of beta-lactoglobulin, the major whey protein, and those of whey protein isolate (WPI), a mixture of whey proteins, exhibited solid-like mechanical spectra, i.e., the predominant storage modulus G' over the loss modulus G", in a certain range of the frequency omega (1-100 rad/s), regardless of the presence or absence of added NaCl. The existence of the added salt was, however, a critical factor for determining transitions in mechanical spectra during gelation at 70 degrees C. beta-Lactoglobulin dispersions in 0.1 mol/dm(3) NaCl maintained the solid-like nature during the entire gelation process and, after passing through the gelation point, satisfied parallel power laws (G' approximately G" approximately omega(n)) that have been proposed for a critical gel (i.e., the gel at the gelation point) that possesses a self-similar or fractal network structure. In contrast, beta-lactoglobulin dispersions without added salt exhibited a transition from solid-like [G'(omega) > G"(omega)] to liquid-like [G'(omega) < G"(omega)] mechanical spectra before gelation, but no parallel power law behavior was recognized at the gelation point. During extended heating time (aging), beta-lactoglobulin gels with 0.1 mol/dm(3) NaCl showed deviations from the parallel power laws, while spectra of gels without added NaCl approached the parallel power laws, suggesting that post-gelation reactions also significantly affect gel network structures. A percolation-type sol-to-gel transition was found only for WPI dispersions without added salt.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号