首页 | 本学科首页   官方微博 | 高级检索  
     


A synergistic reaction mechanism of a cycloalternan-forming enzyme and a D-glucosyltransferase for the production of cycloalternan in Bacillus sp. NRRL B-21195
Authors:Kim Yeon-Kye  Kitaoka Motomitsu  Hayashi Kiyoshi  Kim Cheorl-Ho  Côté Gregory L
Affiliation:Enzyme Laboratory, National Food Research Institute, 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan.
Abstract:Cycloalternan-forming enzyme (CAFE) was first described as the enzyme that produced cycloalternan from alternan. In this study, we found that a partially purified preparation of CAFE containing two proteins catalyzed the synthesis of cycloalternan from maltooligosaccharides, whereas the purified CAFE alone was unable to do so. In addition to the 117 kDa CAFE itself, the mixture also contained a 140 kDa protein. The latter was found to be a disproportionating enzyme (DE) that catalyzes transfer of a D-glucopyranosyl residue from the non-reducing end of one maltooligosaccharide to the non-reducing end of another, forming an isomaltosyl residue at the non-reducing end. CAFE then transfers the isomaltosyl residue to the non-reducing end of another isomaltosyl maltooligosaccharide, to form an alpha-isomaltosyl-(1-->3)-alpha-isomaltosyl-(1-->4)-maltooligosaccharide, and subsequently catalyzes a cyclization to produce cycloalternan. Thus, DE and CAFE act synergistically to produce cycloalternan directly from maltodextrin or starch.
Keywords:Cycloalternan   Isomaltose agarose affinity chromatography   Disproportionating enzyme   Cycloalternan-forming enzyme   Alternanase
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号