首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Phylogenomics,molecular evolution,and estimated ages of lineages from the deep phylogeny of Poaceae
Authors:Samuel S Jones  Sean V Burke  Melvin R Duvall
Institution:1. Intercollege Graduate Degree Program in Plant Biology, The Pennsylvania State University, University Park, PA, 16802, USA
2. Department of Biological Sciences, Northern Illinois University, 1425 W. Lincoln Hwy, DeKalb, IL, 60115-2861, USA
Abstract:The deeply diverging subfamilies of grasses: Anomochlooideae, Pharoideae, and Puelioideae, today inhabit tropical forest floors as sparsely distributed depauperate lineages. The BEP/PACMAD grasses, which make up the majority of the family, are the result of a more recent radiation. Species in the deeply diverging subfamilies were here investigated to better understand molecular evolutionary processes and ages of divergence. Complete chloroplast genomes (plastomes) of Pharus latifolius L., P. lappulaceus Aubl., and Puelia olyriformis (Franch.) Clayton were determined. Four plastome loci from seven species of the deep subfamilies were also sequenced. Phylogenetic and mutation analyses and divergence estimations were conducted on all sequences together with homologous sequences from other Poaceae. Mutation analyses surveyed insertion/deletion mutations across the plastomes, clarified a trend in the molecular evolution of the rpoC2 locus, and indicated unique pseudogenizations in the plastomes of Pharus and Puelia. Phylogenetic analyses largely confirmed earlier multi-gene phylogenies. Phylogenomic and divergence analyses produced estimated origins of the crown nodes of Anomochlooideae at 65–104 Ma, Pharoideae at 44–71 Ma, and Puelioideae at 62–96 Ma. The upper ends of our estimated ranges are in general agreement with previous estimates. However, the lower ends of our ranges are considerably older than previous estimates, reflecting the influence of the less commonly used oldest fossil calibration point. The deeply diverging subfamilies exhibited the accumulation of numerous substitution and indel mutations consistent with a long evolutionary history that predated the radiation of the BEP/PACMAD grasses. We hypothesize that relatively rapid warming and drying in Africa at 55–56.5 Ma may have acted as selective forces stimulating adaptive radiations of grasses from the African tropical forests into diverse habitats.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号