首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Role of Achromobacter xylosoxidans AUM54 in Micropropagation of Endangered Medicinal Plant Naravelia zeylanica (L.) DC
Authors:Abitha Benson  Manoharan Melvin Joe  Balathandayutham Karthikeyan  Tongmin Sa  Chandrasekaran Rajasekaran
Institution:1. School of Bio-Sciences and Technology (SBST), VIT University, Vellore, 632 014, Tamil Nadu, India
2. Department of Agricultural Chemistry, Chungbuk National University, Cheongju, Chungbuk, 361-763, Republic of Korea
3. Department of Microbiology, Faculty of Agriculture, Annamalai University, Annamalainagar, 608002, Tamil Nadu, India
Abstract:This study was carried out to evaluate the inoculation effects of Achromobacter xylosoxidans AUM54 and Indole-3-butyric acid (IBA) on the growth of the medicinal plant Naravelia zeylanica (L.) DC under micropropagation conditions. Results revealed that the micropropagated shoots treated with the combination of endophytic bacterium and IBA promoted shoot growth, root length, number of roots, chlorophyll content, nitrogen content, antioxidant enzymes, and stress tolerance compared with the control plants. A significant increase in shoot fresh and dry weights (64.65 and 8.85 %), root fresh and dry weights (61.65 and 3.91 %), shoot length (30.17 %), root length (28.57 %) and number of roots (276.9 %) was observed in treated plants over controls. Total chlorophyll and nitrogen content of bacterized plants also treated with IBA showed a 48.39 and 116.66 % increase, respectively, compared with controls. A significant increase in peroxidase (22.52 %) and superoxide dismutase levels (48.38 %) and fewer changes in the polyphenol oxidase level were observed in plants treated with A. xylosoxidans AUM54 and IBA. Moreover, stress ethylene levels were reduced by 21.4 and 14.5 % due to bacterization with A. xylosoxidans AUM54 and IBA treatment during postacclimatization and acclimatization stages, respectively. The shoot primordial with application of A. xylosoxidans AUM54 and IBA (1 mg l?1) had increased survivability of N. zeylanica plants by 30 % during the acclimatization stage under greenhouse conditions. From the present study it could be inferred that the association of endophytic bacterium A. xylosoxidans AUM54 and IBA with in vitro shoots of N. zeylanica improved root initiation, promoted plant growth and development under micropropagation conditions, reduced stress ethylene levels, and increased survivability during the postacclimatization stage. Therefore, A. xylosoxidans AUM54 along with IBA treatment can be used as a valuable tool for micropropagation of N. zeylanica and other endangered plants.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号